亚马逊云科技:实现大数据与机器学习双剑合璧
近年来,数字化转型已经被更多的企业接受,而初级的数字化也已经深入到“数“”智“融合阶段。红杉资本此前做的一项研究显示,企业数字化能力评估模型的重要一环是数据驱动的洞察与决策,即基于数据和复杂的算法推荐、预测等结果,帮助管理层做出更科学和高效的决策。
咨询机构能够从宏观上帮助企业进行数智融合的方法论指导,而作为企业的数字底座云计算厂商亚马逊云科技,有着更深层次的认识,能够帮助企业完成技术实现。
在不久前召开的《云领数智融合,重塑数据洞察》沟通会上,亚马逊云科技大中华区产品部总经理陈晓建建议,企业要重塑数据洞察,一定是将数据(大数据技术)和智能(机器学习技术)进行融合和统一。
大数据与机器学习的需求变化也越来越多。主要表现为四个方面:
组织架构层面:将原来分散在各个部门的机器学习实践进行整合,并与大数据项目进行统一协调和资源配置;
人员能力层面:要求和安排原有传统的大数据实践者掌握机器学习技术,应用到大数据具体项目或承接新的机器学习相关的项目需求,要求机器学习从业者也要掌握大数据处理能力,更好、更便捷地完成模型所需的数据准备和加工;
项目实施层面:仅依靠传统的大数据技术是无法全方位提供充足的数据见解,仍需要机器学习的模型能力补充,越来越多的数据项目会融合大数据和机器学习两者的能力;
工具支撑层面:需要面向大数据技术和机器学习构建统一的开发平台和技术基础,可能是对已有大数据平台进行改造增加机器学习相关场景和能力,或是完全推倒重新构建一个面向两者的通用的平台。
在现实中,数据分析与机器学习之间,存在着很多不协同的问题。如何将二者进行有效融合,陈晓建认为需要解决三个方面的问题:
第一:数据和机器学习分而治之,数据及技术孤岛制约敏捷迭代。
第二:数据处理能力不足。在生产制造企业,机器学习帮助客户对产品售后维修需求进行预测,由被动响应变为主动规划。但由于不具备足够的大数据处理能力,模型开发成功后 ,不能够有效收集处理海量的运营数据,致使预测不准确,无法达到预期业务目标。
第三:据分析人员参与度低。现实情况经常是,模型在实验环节效果良好,但实际使用中却不尽人意,实验环境只是对真实环境的简单模拟,生产环境要复杂得多。
与一般的咨询公司给出的方法论不同,亚马逊云科技能在技术细节上帮助企业更有效实现升级变革。这蕴含了亚马逊云科技三大技术能力:
构建云中统一的数据治理底座,打破数据及技能孤岛。亚马逊云科技能帮助客户构建统一的数据治理底座,实现大数据和机器学习的数据共享,数据权限的统一管控,以及两者统一的开发和流程编排。云中统一的数据治理底座不仅能提升大数据和机器学习的高效融合,还能减少大数据和机器学习重复构建的工作,并且显著降低成本。其中, Amazon Lake Formation推出诸多新功能,实现了数据网格跨部门的数据资产共享,以及基于单元格的最细粒度的权限控制机制。Amazon SageMaker Studio可一站式地完成数据开发、模型开发及相关的生产任务,该服务基于多种专门构建的服务,如交互式查询服务Amazon Athena、云上大数据平台Amazon Elastic MapReduce (Amazon EMR)、云数据仓库服务Amazon Redshift、Amazon SageMaker等,为大数据和机器学习提供统一的开发平台。
助力机器学习由实验转为实践,为机器学习提供生产级别的数据处理能力。机器学习项目成功的关键是对复杂的数据进行加工和准备。亚马逊云科技提供多种灵活可扩展、专门构建的大数据服务,帮助客户进行复杂的数据加工及处理,应对数据规模的动态变化,优化数据质量。其中,Amazon Athena能够对支持多种开源框架的大数据平台,包括Amazon EMR、高性能关系数据库Amazon Aurora、NoSQL数据库服务Amazon DynamoDB、Amazon Redshift等多种数据源,对这些数据源进行联邦查询,快速完成机器学习建模的数据加工。 以Amazon Redshift、Amazon Managed Streaming for Apache Kafka (Amazon MSK)和 Amazon EMR 为代表的无服务器分析能力,可以让客户无需配置、扩展或管理底层基础设施,即可轻松地处理任何规模的数据,为机器学习项目提供兼具性能和成本效益的特征数据准备。
让数据分析智能化,赋能业务人员探索创新。亚马逊云科技还不断提供更加智能的数据分析服务,赋能业务人员进行智能分析、模型效果验证以及自主式创新。例如,在日常分析工具中集成机器学习模型预测能力,其中深度集成机器学习Amazon SageMaker模型预测能力的Amazon QuickSight 、在分析结果中添加基于模型预测的Amazon Athena ML,可帮助用户使用熟悉的技术,甚至通过自然语言来使用机器学习。亚马逊云科技还提供如Amazon Redshift ML、可视数据准备工具Amazon Glue DataBrew、零代码化的机器学习模型工具 Amazon SageMaker Canvas等服务,让业务人员探索机器学习建模。
亚马逊云科技 “云、数、智三位一体”服务组合优势能够打破数据及技能孤岛、机器学习由实验转为实践、赋能业务人员探索创新。而企业则可以云中打造统一的数据基础底座,实现大数据和机器学习的双剑合璧,为企业发展提供新动力。
您可能感兴趣的文章
- 06-01红帽更新产品组合,进一步提高云原生应用开发的性能和规模
- 12-17埃森哲与亚马逊云科技深化合作,以云为翼加速企业数字化转型
- 04-11Monness Crespi Hardt:增速并未放缓 谷歌(GOOG.US)还能涨近40%
- 05-26外媒称美国芯片制造商博通公司拟收购云计算企业
- 10-19Arm 生态系统为物联网奠定信任根基
- 05-16电信业变革:云计算带给运营商的五大益处
- 10-07SDAIA、谷歌云培训计划赋能AI领域女性
- 03-25亚马逊云科技发布中国业务战略 张文翊宣布三驾马车加速客户全球业务拓展
- 10-07亚马逊云科技宣布推出生成式AI新服务加速创新
- 08-11亚马逊云服务部门斩获美国政府百亿美元大单
阅读排行
推荐教程
- 11-01阿里云无影升级2.0 云电脑解决方案时代到来
- 11-01阿里云数据库全面Serverless化!与AI共同驱动走向一站式智能数据平台
- 11-012023云栖大会关键词:开放、大模型、MaaS、产业智能升级
- 10-31Serverless化云产品超40款阿里云发布全球首款容器计算服务
- 10-31阿里云给中国所有大学生每人送一台云服务器
- 10-31解密杭州亚运背后科技:核心系统100%上云,20多项全球首创智能应用
- 10-312023云栖大会开幕 阿里巴巴蔡崇信:打造AI时代最开放的云
- 10-31巴黎奥运会将基于阿里云实现云上转播
- 10-31马斯克440亿美元收购Twitter一年后:全力“下云”,成本速降60%,功能代码从70万行减少至7万!
- 10-30中国广电已建700MHz基站59万站 5G用户突破1800万